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The probability is one of the many factors which influence phonetic variation. Contextual proba-

bility, which describes how predictable a linguistic unit is in some local environment, has been

consistently shown to modulate the phonetic salience of words and other linguistic units in speech

production (the probabilistic reduction effect). In this paper the question of whether the probabil-

istic reduction effect, as previously observed for majority languages like English, is also found in

a language (Kaqchikel Mayan) which has relatively rich morphology is explored. Specifically,

whether the contextual predictability of words and morphemes influences their phonetic duration

in Kaqchikel is examined. It is found that the contextual predictability of a word has a significant

effect on its duration. The effect is manifested differently for lexical words and function words. It

is also found that the contextual predictability of certain prefixes in Kaqchikel affects their dura-

tion, showing that contextual predictability may drive reduction effects at multiple levels of struc-

ture. While the findings are broadly consistent with many previous studies (primarily on English),

some of the details of the results are different. These differences highlight the importance of

examining the probabilistic reduction effect in languages beyond the majority, Indo-European

languages most commonly investigated in experimental and corpus linguistics.
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I. INTRODUCTION

The contextual probability of a linguistic unit—a seg-

ment, syllable, morpheme, word, or even phrase—refers to

the likelihood of that unit occurring in a particular local lin-

guistic environment. Contextual probability has been consis-

tently shown to modulate the phonetic salience of words,

segments, and other units in speech production (Arnon and

Cohen Priva, 2013; Aylett and Turk, 2004, 2006; Bell et al.,
2002; Bell et al., 2003; Bell et al., 2009; B€urki et al., 2011;

Cohen, 2014; Cohen Priva, 2015; Gahl et al., 2012; Gregory

et al., 1999; Hanique and Ernestus, 2011; Jurafsky et al.,
2001; Kuperman and Bresnan, 2012; Lieberman, 1963;

Pluymaekers et al., 2005b; Raymond et al., 2006; Tily and

Kuperman, 2012; Torreira and Ernestus, 2009; Schuppler

et al., 2012; Seyfarth, 2014; van Son and Pols, 2003; van

Son et al., 2004; van Son and van Santen, 2005). This rela-

tionship between predictability and phonetic form can be

termed the probabilistic reduction effect.
Most prior studies investigating the probabilistic reduc-

tion effect in speech production have drawn on data from

just a few well-studied languages, in particular, English and

Dutch. This raises the fundamental question of whether the

probabilistic reduction effect is cross-linguistically robust. In

particular, the languages which have been studied in

connection with the probabilistic reduction effect are largely

Indo-European languages, with morphological systems that

would be typically characterized as analytic (few mor-

phemes per word) rather than synthetic or agglutinating

(many morphemes per word). In an analytic language, com-

plex semantic concepts such as causation (“Z makes X do

Y”) are often expressed using several independent words. In

agglutinative languages, those same concepts may be instead

be encoded into a single, internally complex word, with a

high degree of morphological and phonological coherence

(e.g., Kaqchikel xiruwartisaj /S-i-Qu-war-tis-av/ “(s)he made

me go to sleep”). Presumably, these structural differences

have consequences for the probabilistic reduction effect: sta-

tistical dependencies which hold between words in analytic

languages, conditioning word-level predictability, may hold

more strongly between morphemes in agglutinating lan-

guages, lessening or even eliminating the effect of contex-

tual predictability on production at the word level.

In this paper we ask whether the probabilistic reduction

effect, as observed for majority languages like English, may

still be observed in a language (Kaqchikel Mayan) which

has richer morphology. Specifically, we first examine

whether the contextual predictability of a word influences its

phonetic duration in Kaqchikel; second, we examine whether

the contextual predictability of a morpheme within a word

influences its phonetic duration, above and beyond the dura-

tion of the word itself (focusing specifically on verbal aspect

markers). Our study is motivated by the substantiala)Electronic mail: linguist@kevintang.org
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morphological differences between Kaqchikel and Indo-

European languages, and by the general lack of research on

the probabilistic reduction effect in languages with relatively

complex morphological systems.

A. The current studies

Kaqchikel is a K’ichean-branch Mayan language spoken

by over half a million people in southern Guatemala. The

morphological system of Kaqchikel is moderately aggluti-

nating, especially in the areas of verbal derivation and inflec-

tion (see Chacach Cutzal, 1990; Kaufman, 1990; Garc�ıa
Matzar and Rodr�ıguez Guaj�an, 1997; Brown et al., 2010;

Coon, 2016). Across lexical categories, the prefixal field is

mostly reserved for inflectional affixes, while the suffixal

field is composed of derivational affixes [see (1) and (2)

below; the adjective root ch’u’j / u?v/ “crazy” is in bold].1

(1) x-i-b’e-ki-ch’uj-ir-is-aj

ASP-1SG.ABS-DIR-3PL.ERG-crazy-INCH-CAUSE-TRANS

“they went somewhere to drive me crazy”

(2) qa-ch’uj-ir-is-ax-ik

1PL.ERG-crazy-INCH-CAUSE-PASS-NOM

“our being driven crazy.”

While the probabilistic reduction effect on word and

morpheme duration has, to our knowledge, never been

examined in an agglutinative language, there is nonetheless

reason to suspect that such an effect could be found in

Kaqchikel.

Shaw and Kawahara (2017) examined the effect of local

phonotactic predictability on vowel duration in Japanese, an

agglutinative language. Two measures of conditional proba-

bility (surprisal and entropy) were found to independently

influence vowel duration in this study. Kurumada and Jaeger

(2015) examined Japanese speakers’ production of optional

case marking on objects. Using a sentence production task, it

was found that object case markers were more likely to occur

in sentences with non-canonical objects (i.e., animate

objects), or objects which were unlikely given the larger sen-

tence (e.g., “policeman” is a likely subject of “arrest,” but

not a likely object). While these two studies did not directly

examine the probabilistic reduction effect at the level of

words or morphemes, they nonetheless suggest that contex-

tual predictability can influence speech production on a sub-

lexical level in agglutinative languages.

Pluymaekers et al. (2005b), focusing on the effects of

lexical frequency (context-free predictability) on durational

reduction, examined this effect within morphologically

complex words in spoken Dutch. They considered four

Dutch affixes (three prefixes ge-, ver-, and ont-, and one suf-

fix -lijk), and found that the token frequency of affixed words

was inversely correlated with the duration of the entire affix

and the durations of the individual segments in the affix.

This suggests that lexical frequency affects not only the

duration of whole words, as has been frequently reported,

but also the duration of smaller units such as affixes and seg-

ments. In a different study, Caselli et al. (2016) examined

the probabilistic reduction effect in morphologically com-

plex words in spoken English, similarly finding that whole-

word frequency and root frequency had independent effects

on word duration.

Pluymaekers et al. (2005a) investigated how the contex-

tual predictability of a word, given the previous or the fol-

lowing word, affects the duration of the seven most frequent

Dutch words ending in the adjectival suffix -lijk (considering

the duration of the whole word, the stem, and the suffix sepa-

rately). Contextual predictability given the previous word

affected the duration of stems for just two out of the seven

word types in this study. Contextual predictability given the

following word affected stem duration for all seven word

types, and the suffix duration of two word types. Despite the

inconsistent effect of predictability across items, this study

suggests that word-level contextual predictability, like

context-free lexical frequency (Pluymaekers et al., 2005b),

may condition the duration of whole words as well as sub-

lexical units.

In another study, Arnon and Cohen Priva (2013)

examined the probabilistic reduction effect in multi-word

sequences (e.g., I do not know) using a combination of

experimentally induced lab speech and a corpus of spontane-

ous speech. This study found that high frequency word

sequences have shorter durations overall. Crucially, this

effect holds both within and across syntactic units, and is not

reducible to the frequency of the individual words within

each sequence. In connection with our study, we note that

there is a potential parallel between such multi-word sequen-

ces and individual words in agglutinative languages like

Kaqchikel: morphologically complex words in agglutinating

languages, like multi-word sequences in more analytic lan-

guages, often subsume many meaning-bearing units which

may be statistically interdependent. In sum, the studies men-

tioned above suggest that the predictability of an internally

complex structure (a word or multi-word sequence) can

modulate phonetic duration at the level of the entire structure

or its subparts (e.g., segments, morphemes, words), above

and beyond what could be predicted from morphological and

syntactic structure alone.

In our study, we considered whether the probabilistic

reduction effect might manifest differently for function

words and lexical words, and for morphologically simple vs

morphologically complex words. Previous studies of English

have treated function words differently from content words,

either by analyzing them separately (e.g., Bell et al., 2009)

or by excluding them from analysis completely (the majority

of past studies). While there is reason to believe that function

words are processed differently from content words (e.g.,

Levelt et al., 1999), the lexical-functional distinction is less

clear-cut for agglutinative languages, in which words have a

high likelihood of containing both lexical and functional

material, and in which there may (perhaps as a result) be a

smaller overall number of independent function words. For

instance, tense/aspect distinctions are often expressed by

independent auxiliaries in English (will, have, etc.), but by

affixes in Kaqchikel (e.g., y-, xt-, etc.; see Sec. IV). As a

second example, Mayan languages typically have only a

few independent prepositions, expressing most spatial rela-

tionships by means of inflected nouns known as relational
nouns (e.g., Kaqchikel w-ik’in 1SG.ERG-with “with me”;
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see Coon, 2016; Henderson, 2016, and references there). As

a practical consequence, it becomes harder to see how one

can exclude functional material from analysis in a language

like Kaqchikel, as functional morphemes are so frequently

contained within larger lexical words. That said, for practical

reasons we follow past work in making a distinction between

function words and lexical words in Kaqchikel, with the

understanding that many lexical words, though built on a sin-

gle core lexical category root, also contain one or more func-

tional affixes.

Many studies which relate phonetic reduction to contex-

tual predictability have focused on whole words as the unit

of analysis. Indeed, there is a large body of evidence sup-

porting the effect of inter-word contextual predictability on

duration (e.g., Bell et al., 2003; Bell et al., 2009; Gregory

et al., 1999; Jurafsky et al., 2001; Tily and Kuperman,

2012). Fewer studies have considered whether similar effects

might hold at the level of the morpheme as well. Past studies

exploring predictability and reduction at the morpheme level

have focused on paradigmatic probability (Schuppler et al.,
2012; Hanique and Ernestus, 2011; Hanique et al., 2010;

Kuperman et al., 2007) rather than contextual probability.

Unlike contextual predictability, which describes how likely

a linguistic unit such as a word or morpheme is in a given

context, paradigmatic probability describes how likely a lin-

guistic unit is to be chosen from a set of related forms (e.g.,

a set of morphologically complex words belonging to the

same inflectional or derivational paradigm). While both of

these effects tap into morphological structure, Cohen (2014,

2015) shows that paradigmatic probability may affect pho-

netic salience in production, independent of contextual pre-

dictability. Indeed, the effect of paradigmatic probability on

speech production is qualitatively distinct from the effect of

contextual predictability, as forms with high paradigmatic

probability seem to be phonetically enhanced rather than

reduced. Cohen (2014) examined how contextual probability

and paradigmatic probability jointly affect the duration of

the subject-verb agreement suffix -s in English. It was found

that the higher the contextual probability, the shorter the suf-

fix, and the higher the paradigmatic probability, the longer

the suffix. Cohen (2015) extended this result by investigating

how contextual probability and paradigmatic probability

jointly affect the production of verbal inflectional suffixes in

Russian (the neuter singular suffix -o and the plural suffix

-i). Two types of paradigmatic probability were examined

in this study. Cohen (2015) found that as the contextual

probability of singular agreement increases, the first formant

of -o decreases, reducing the acoustic distance between -o
and -i. To the extent that this acoustic shift weakens the pho-

netic contrast between -i and -o, it can be viewed as a reduc-

tion effect (see also Lindblom, 1990 and many others).

Together, these two studies suggest that the contextual pre-

dictability of a morpheme may lead to morpheme-level

reduction effects, while the paradigmatic predictability of a

morpheme may lead to morpheme-level enhancement

effects, at least in English and Russian. In our study, we also

considered whether probabilistic reduction might manifest at

the morpheme level in Kaqchikel, an agglutinative language.

This paper sets out to achieve three goals. The first is

simply to establish whether word-level contextual probabil-

ity influences word duration in Kaqchikel. The second goal

is to determine if the effect of predictability on durational

reduction might hold across different types of morphological

structures. This second goal is motivated by two questions:

(a) whether the probabilistic reduction effect interacts with

the morphological complexity of words and (b) whether the

effect can be found in functional morphemes that are inde-

pendent words, rather than affixes. The third goal is to deter-

mine if morpheme-level contextual probability can

independently influence morpheme duration for affixes,

apart from other factors known to affect morpheme duration

in production.

In study I, we analyze whether a reduction effect associ-

ated with word-level contextual probability holds for lexical

words, and whether the number of morphemes contained in

a word interacts with the hypothesized reduction effect. In

study II, we analyze whether such an effect might hold for

function words as well. In study III, we analyze whether

there is an effect of morpheme-level contextual probability

on morpheme duration, with a focus on verbal aspect

markers.

II. MATERIALS AND METHODS

A. Word duration data

Word durations were extracted from a spoken corpus of

Kaqchikel. The corpus in question is a collection of audio

recordings of spontaneous spoken Kaqchikel, made in

Solol�a, Guatemala in 2013. Sixteen speakers of the Solol�a
variety of Kaqchikel contributed to this corpus and shared

short, spontaneous narratives of their own choosing for the

recording.

Fifteen (out of 16) of the speakers were born in the

department of Solol�a. The remaining speaker was born in the

nearby department of Sacatep�equez. As of 2013, the speak-

ers were all living in the department of Solol�a, with six liv-

ing in the city of Solol�a, and ten in other towns. Six speakers

were male, and 10 female; their ages ranged from 19 to 84

years old [mean¼ 33 years, median¼ 28 years, standard

deviation (sd)¼ 15.4]. The speakers all had self-reported

native-level fluency in Kaqchikel. Most speakers reported

using Kaqchikel as the primary language of communication

at home. Fluency was also assessed impressionistically dur-

ing the recording sessions by a native speaker collaborator

(Juan Ajsivinac Sian) and by co-author R.B., an L2 learner

of Kaqchikel.

In total, the corpus amounts to about 4 h of recorded

speech (�40 000 word tokens). The entire corpus was tran-

scribed orthographically by a native speaker of Kaqchikel. A

subset of this corpus (�80 min) was divided into utterances

using PRAAT (Boersma and Weenink, 2014). For this purpose,

an utterance was defined as a breath group, which is a stretch

of speech set off by substantial silent pauses at its beginning

and end, often flanked by audible inhalations which are visi-

ble on a spectrogram. Utterances in this sense often (but not

always) coincide with a sentence or clause in the corpus. For

this study, we took a subset of the corpus, consisting of
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approximately 3.5 min of audio per speaker (about 50 min in

total), and annotated it phonetically on the word and segment

levels using PROSODYLAB-ALIGNER [http://prosodylab.org/tools/

aligner/; Gorman et al., 2011; see Bennett et al. (2018) for a

more detailed description of the corpus and alignment pro-

cess]. Word durations were extracted from the resultant

aligned corpus. Tokens were excluded from analysis if they (a)

were produced disfluently, (b) were not attested in the written

corpus of Kaqchikel (described in Sec. II B) which we used to

estimate predictability measures, or (c) were found only once

in the spoken corpus, as it is impossible to statistically model

word-specific variation in duration from single tokens of a

given word (see, e.g., Pierrehumbert, 2002; Coetzee and Pater,

2011 for discussion of word-specific phonetic effects). In total,

the durations of 8430 word tokens (694 word types) met these

criteria and were included in the analysis.

In order to examine the effect of word class (functional

vs lexical) and morphological complexity as predictors of

word-level duration, as well as their interaction with contex-

tual predictability, we manually tagged each word type as

being a function word or a lexical word. We also tagged

word types for the number of morphemes they contain.

Tagging was done by one of the authors (R.B.), a second-

language learner of Kaqchikel and a specialist in Mayan lan-

guages. Twenty-three word types were identified as typos

and excluded from analysis.

The dataset is summarized in Table I, which contains

the number of distinct word tokens and word types divided

by word class (functional vs lexical) and morpheme count.

Lexical words in our dataset have morpheme counts ranging

from 1 to 5. The distribution of morpheme counts is sparse

for function words, with no function word containing more

than two morphemes. The majority of function words are

monomorphemic (5223 word tokens and 141 word types).

Bimorphemic function words (392 word tokens and 38 word

types) amount to 7.5% of all function word tokens; many of

these are relational nouns like awoma 2SG.ERG-reason

“because of you.” Given the sparsity of function words with

higher morpheme counts, in Study II only the monomorphe-

mic function words were analyzed. In sum, 2745 lexical

word tokens and 492 word types were analyzed in study I,

and 5223 function word tokens and 141 word types were

analyzed in study II.

B. Probabilistic language model

In order to estimate measures of contextual predictabil-

ity, we needed access to a reasonably large corpus of

Kaqchikel. While it might be possible to estimate such varia-

bles using a spoken corpus, as Seyfarth (2014) did for

English, our spoken corpus is likely too small to estimate the

variables of interest (see Brysbaert and New, 2009). This

required the use of a written corpus: however, to the best of

our knowledge there are no structured corpora of digitized,

written Kaqchikel currently available for public use. It was

therefore necessary to create a novel, digitized written cor-

pus of Kaqchikel.

Our written corpus was constructed from existing reli-

gious texts, spoken transcripts, government documents, medi-

cal handbooks, and other educational books written in

Kaqchikel—essentially all the materials we could find that

were already digitized or in an easily digitizable format (see

Bennett et al., 2018 for more details on the construction of this

written corpus). The written corpus contains approximately

0.7 million word tokens and 29 355 word types. Each word in

the written corpus was phonemically transcribed using an auto-

mated grapheme-to-phoneme conversion script. All predict-

ability variables were estimated using this written corpus.

Two bigram language models were constructed using the

written corpus. One model describes the probability of each

word given the word before it (the previous word), and the

other model describes the probability of each word given the

word after it (the following word). Bigram models were cho-

sen over larger n-gram models because it has been found that

using a larger window (e.g., a trigram model) often makes a

negligible contribution to predicting word duration after

bigram probabilities have been taken into account (Jurafsky

et al., 2001). Model construction was carried out using the

MIT Language Modeling (MITLM) toolkit (Hsu, 2009). The

probabilities in the language models were smoothed using the

modified Kneser-Ney method (Chen and Goodman, 1999)

with the default smoothing parameters provided by the toolkit.

These two models were used to estimate the contextual pre-

dictability of each word in the spoken corpus.

Phonotactic probability is also known to be a potential

predictor of word duration (Gahl et al., 2012). In order to

estimate the phonotactic probability of each word, an addi-

tional language model was constructed which estimated the

probability of segmental transitions within words. Unlike the

word-level models, a trigram model was chosen in favor of a

bigram model for the calculation of phonotactic probability.

This decision is motivated by the fact that the dominant

shape of root morphemes in Kaqchikel is tri-segmental

/CVC/, and /CVC/ roots are also domains for certain phono-

tactic restrictions (Bennett, 2016; see also Hayes and

Wilson, 2008). The other modeling parameters were identi-

cal to the word-level language models.

C. Variables included in the statistical models

In both studies I and II we fit linear mixed-effects mod-

els to our data, attempting to predict word durations in our

TABLE I. Summary of word duration data. Token and type counts for this data are divided by word class in each column and morpheme count across the

table.

Morpheme count! All 1 2 3 4 5

#Word class Tokens Types Tokens Types Tokens Types Tokens Types Tokens Types Tokens Types

Lexical 2745 492 864 119 891 169 854 160 121 37 15 7

Functional 5615 179 5223 141 392 38 0 0 0 0 0 0
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spoken corpus from a set of lexical, morphological, phono-

logical, and contextual predictors. As noted above, two dif-

ferent word-level bigram probabilities were considered in

investigating whether contextual predictability conditions

word duration in Kaqchikel (i.e., the probabilistic reduction

effect). These are the bigram probability of a word given the

previous word (forward bigram probability), and the bigram

probability of a word given its following word (backward

bigram probability). Along with these predictors, additional

control variables suggested by previous research were also

included in our statistical model, in order to ensure that the

effect of contextual predictability, if observed, is genuine

and independent of any other potential predictors of word

duration. These additional predictors are described below.

1. Baseline duration

Baseline duration is a crucial statistical control for

investigating the probabilistic reduction effect. The aim of

our study is to identify whether contextual predictability can

modulate word duration, relative to the expected (or

“baseline”) duration that each word should have, given other

properties of that word which are independent of contextual

predictability. Previous work on the probabilistic reduction

effect has used a number of methods to estimate baseline

durations for words. In most such studies, the number of seg-

ments and the number of syllables are used as predictors of

baseline word duration. However, these are fairly crude mea-

sures of expected duration, as they draw no distinctions

between different segment or syllable types (e.g., on average

the consonant / / might be longer than the consonant /n/).

To tackle this, another common method is to estimate the

average duration of a segment type in the corpus, and sum

the average segment durations for each segment contained in

a given word type (e.g., Bell et al., 2009). Variations on this

method could involve extending the sublexical units consid-

ered from single segments to bigrams or hierarchical struc-

tures like syllables, in order to capture the effects that

syllable structure and phonotactic context might have on

segmental duration (e.g., onset /l/ might not have the same

average duration as coda /l/; Sproat and Fujimura, 1993).

Recently, Demberg et al. (2012) and Seyfarth (2014) used a

fairly sophisticated technique which estimates word duration

using a text-to-speech synthesis system trained on spoken

speech.

In this study, our choice of a method for estimating

duration baselines is restricted by the fact that Kaqchikel is

an under-resourced language. There exist no text-to-speech

synthesis systems for Kaqchikel, or any other Mayan lan-

guage, which rules out the approach of Demberg et al.
(2012) and Seyfarth (2014). Second, our spoken corpus is

likely too small to estimate average bigram durations. The

corpus contains 13 003 syllable tokens, which is too sparse

to reliably estimate the durations of all segmental bigrams in

the corpus. Kaqchikel has 22 consonant phonemes and 10

vowel phonemes; even assuming just two syllable types, CV

and VC, 440 bigrams are possible given this phonemic

inventory. Apart from the fact that Kaqchikel permits

more complex syllable shapes than just CV and VC (e.g.,

xt€an /St@n/ “girl”), the complex morphology of the language

produces additional consonant clusters, thus giving rise to

even more bigram types [e.g., nretamaj /n-Q-etam-av/ “(s)he

learns it”]. Given these considerations, we opted instead to

use a segment-level baseline method, because individual

segments, being smaller units than bigrams or syllables, are

in general well-attested in our corpus.

Instead of summing the average durations of the seg-

ments contained in a given word to calculate its baseline

duration, we employed an alternative method suggested to

us by Cohen Priva (2017). This baseline method is similar to

the method used by Bell et al. (2009), inasmuch as it

involves predicting the duration of each word token from the

counts of each phoneme type found in that word. It differs in

that it uses a regression model to estimate the contribution of

each segment, rather than computing the average durations

of each segment type directly. To do this, we computed a

regression model for the duration of each word token in our

spoken corpus. There were 32 predictors in this model, one

for each phoneme of Kaqchikel. For each word, the value for

each of its predictors is the number of times the correspond-

ing phoneme is found in the word. For example, the word

ninwatinisaj /n-inw-atin-is-av/ “I bathe him/her/it” contains

one instance each of /w t s v/, two instances of /a/, three

instances each of /n i/, and zero instances of all other pho-

nemes. A simple linear regression model was constructed to

predict the duration of the 8430 word tokens in the spoken

corpus based on their phoneme content. The fitted model

was then used to re-predict word durations for each of the

original word types. These predicted values then served as

the baseline duration for each word type.

This method has the advantage of not relying on obtain-

ing the segment durations directly from the spoken corpus,

while allowing for each segment type to contribute differ-

ently to the overall duration of a word. Generally speaking,

forced alignment methods can obtain more accurate word-

level alignments than segment-level alignments, because

segment-level alignment is more dependent on the quality of

the original phonetic transcriptions than word-level align-

ment. Therefore, this method is especially appropriate when

segment-level phonetic transcriptions might not match the

actual acoustic signal, due to, e.g., unanticipated variation in

production (such as lenition of segments) or simply human

error. These factors are potentially relevant for segment-

level alignments in our spoken corpus, as those alignments

have not yet been manually corrected.

2. Syllable count

The number of syllables in each word type was included

as a predictor of duration. This variable serves two purposes.

First, it provides another statistical control for the expected

baseline duration of each word, since the baseline estimate

used here is dependent only on segments and not on sylla-

bles. Second, given Menzerath’s law (Menzerath and de

Oleza, 1928), and the specific sub-case of polysyllabic short-

ening (e.g., Turk and Shattuck-Hufnagel, 2000, and referen-

ces therein), mean syllable duration may decrease with the

number of syllables in the word. This means that syllable
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count could negatively correlate with overall word duration,

once other factors (e.g., segment count) have been taken into

consideration.

3. Speech rate

Speech rate was included as a control predictor, since

speech rate negatively correlates with word duration essen-

tially by definition. Speech rate was estimated as the number

of syllables per second in each utterance, with “utterance”

defined as a breath group (see Sec. II A). This is a fairly stan-

dard measure of speech rate in phonetics (e.g., De Jong and

Wempe, 2009, and citations therein).

4. Word position

It is well-known that word duration varies by phrasal

position, with phrase-final and phrase-initial words showing

some degree of lengthening relative to phrase-medial words

(e.g., Klatt, 1976; Wightman et al., 1992, and many others).

We therefore included two categorical predictors related to

phrasal context: one predictor for initial vs non-initial posi-

tion and another for final vs non-final position.

5. Disfluency

Words that occur near disfluencies have been shown to

lengthen relative to other words (Bell et al., 2003; Fox Tree,

1997). The relevant sense of “disfluency” here includes both

silent pauses in utterance-medial position, and so-called

“filled pauses” (such as English “uh,” “um,” and the like).

We therefore included a categorical binary predictor in our

analysis, coding if a word is adjacent to a silent pause or not.

We did not analyze the potential effect of filled pauses

because at present filled pauses are not consistently coded in

our spoken corpus of Kaqchikel.

6. Word frequency

The number of occurrences of each word type in the

written corpus was used as an estimate of overall word fre-

quency. We expected that word duration would decrease as

word frequency increases (Wright, 1979). That said, previ-

ous research which has assessed the effect of both word fre-

quency and bigram probability jointly has shown more

mixed results concerning the role of word frequency (signifi-

cant, for instance, in Bell et al., 2002, Gahl et al., 2012 and

Tily and Kuperman, 2012, but not, for instance, in Seyfarth,

2014).

7. Backward and forward bigram probability

Both backward and forward bigram probability were

estimated using the word-level language models described

above.2 These two variables are the conditional probability

of a word given the previous word (forward bigram probabil-

ity) or the following word (backward bigram probability), as

estimated from the smoothed language models. Previous

work has shown that forward bigram probability (probability

of word W given the previous word) may have a weaker, or

even insignificant effect on phonetic reduction when

compared to backward bigram probability (probability of a

word W given the following word) (Jurafsky et al., 2001;

Pluymaekers et al., 2005a; Bell et al., 2009; Gahl et al.,
2012; Seyfarth, 2014). However, these measures may not

have an independent effect on word duration once raw,

context-free word frequency is taken into account (Bell

et al., 2002).

8. Neighborhood density

The number of phonological neighbors for each word

type was estimated using the written corpus. In this study, a

phonological neighbor is defined as a word that is one pho-

neme different from the target word, by a single operation of

insertion, deletion, or substitution (i.e., a Levenshtein dis-

tance of 1; Luce, 1986).

Neighborhood density is known to affect accuracy in

word production (Stemberger, 2004; Vitevitch, 1997) as well

as naming latencies (Vitevitch, 2002; Vitevitch and

Sommers, 2003). Most relevantly, Gahl et al. (2012) has

shown that, all else being equal, higher neighborhood den-

sity is correlated with shorter word duration in speech pro-

duction (see also Yao, 2011; Vitevitch and Luce, 2016).

Hence, neighborhood density was included as another pre-

dictor in our model.

9. Phonotactic probability

The phonotactic probability of a word is based on the

probabilities of the segmental sequences it contains, esti-

mated using the segment-level language model described

above. The phonotactic probability of a word is calculated as

the sum of the log probabilities of the individual trigrams it

contains, with the consequence that longer words will also

tend to be less phonotactically probable.3 Previous work has

shown that phonotactic probability affects accuracy in word

production (Goldrick and Larson, 2008) as well as naming

latencies (Vitevitch et al., 2004). Gahl et al. (2012) found

that, unlike neighborhood density, phonotactic probability

has an inconsistent effect on word duration, varying with the

choice of probability measure and other particulars of model

construction. However, Gahl et al. (2012) only dealt with

/CVC/ words, while our study examines words across a

range of segmental lengths (from 2 to 11 segments, with a

median word length of 3 segments). It is well known that

neighborhood density is strongly correlated with phonotactic

probability, but the strength of the correlation weakens as

word length increases: this is because long words have fewer

neighbors (Yao, 2011, Chap. 2) but not necessarily a lower

phonotactic probability (though see Daland, 2015).

Therefore, we might expect phonotactic probability to have

a stronger effect than neighborhood density when words are

relatively long.

10. Morpheme count

The number of morphemes a word contains was

included in study I to examine whether the probabilistic

reduction effect interacts with morphological complexity. To

do so, five interaction terms were included in the model,
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crossing morpheme count with word frequency, forward

bigram probability, backward bigram probability, neighbor-

hood density, and phonotactic probability. Note that a graded

(multi-level) coding of morphological complexity was cho-

sen over a binary one (on gradient structure in morphology,

see Hay and Baayen, 2005).

11. Initial model assessment

Our statistical models contain both continuous and cate-

gorical variables. Following standard practice in regression

modelling, the continuous variables were first log-

transformed (base 10) then z-score normalized (e.g., Baayen,

2008, Sec. 2.2). Z-score normalization allows us to compare

the relative strength of our continuous predictors directly.

Categorical predictors were sum-coded to improve the inter-

pretability of the regression coefficients and the collinearity

of variables, and to avoid model convergence issues

(Wissmann et al., 2007; Jaeger, 2009a; b).

Given that a large number of variables were included in

our models, we needed to assess the possibility of collinear-

ity between predictors. We computed the condition number

(Belsley et al., 1980) for the model following guidelines in

(Baayen, 2008, p. 200), using the function COLLIN.FNC in the

library LANGUAGEr. According to (Baayen, 2008, p. 200), a

model with a condition number �6 has effectively no collin-

earity; a condition number �15 indicates a moderate level of

collinearity, and a condition number �30 indicates a high

level of collinearity. For study I the condition number was

6.17, which should present no danger of collinearity. For

study II the condition number was 9.90, a low level of

collinearity.

D. Variables excluded from the statistical models

A number of variables that are known to affect word

duration were not included in our statistical models. These

decisions are individually justified below.

1. Segment count

Similar to syllable count, segment count can serve as a

further statistical control, negatively correlating with word

duration after other factors are taken into account (Arnon

and Cohen Priva, 2014). The independent contribution of

segment count may reflect the compression effects described

by Katz (2012) and others: the amount of vowel compression

(shortening) in a syllable increases with the number of con-

sonants adjacent to that vowel; similar effects are observed

for consonants in clusters (see also Browman and Goldstein,

1988). However, segment count was not included in the

analysis because it correlates strongly with our baseline

duration measure (R2¼ 0.82 with lexical words, and 0.88

with function words). The inclusion of segment count as a

predictor might therefore have led to troublesome collinear-

ity with other fixed effect variables.

2. Orthographic length

Previous work (Warner et al., 2004; Gahl et al., 2012;

Seyfarth, 2014) on English and Dutch has shown that the

orthographic length of a word can affect word duration, even

in regression models that include phonological variables like

segment and syllable count. However, orthographic length

was not included as a predictor in our models because it cor-

relates strongly with segment count and baseline duration

(the Kaqchikel orthography is relatively shallow, with a

fairly close correspondence between graphemes and pho-

nemes). Additionally, literacy rates are sufficiently low in

Kaqchikel that we see little reason to believe that the orthog-

raphy has a strong influence on Kaqchikel speakers’ mental

representation of their language (on literacy in Mayan lan-

guages, see Fischer and Brown, 1996; Richards, 2003;

England, 2003; Brody, 2004; Holbrock, 2016, and references

there).

3. Part of speech

Previous work (e.g., Gahl et al., 2012; Seyfarth, 2014)

suggests that certain parts of speech show greater reduction

effects in the domain of word duration than other parts of

speech. Part of speech was not included in our models

because the spoken corpus is not yet annotated syntactically.

4. Repetition

Previous work (Fowler, 1988; Fowler and Housum,

1987) has shown that words which are repeated within some

timeframe in a corpus are sometimes reduced in production

compared to the first mention of those words in the corpus.

However, word repetition does not seem to have a consistent

effect on word duration when other factors have been taken

into account, such as the intonational contour on new vs

repeated words (Hawkins and Warren, 1994; Aylett and

Turk, 2004). Given the inconsistent effect of this predictor

and the relatively small size of our dataset, this variable was

not included.

5. Informativity

Informativity is defined as the average predictability of

a word in context (Cohen Priva, 2008; Piantadosi et al.,
2011; Seyfarth, 2014). While it is possible to compute this

measure for Kaqchikel using our written corpus, informativ-

ity was not included in our analyses. The reason for this

exclusion was that we would first like to establish whether

more basic measures of contextual predictability have an

effect on word duration in Kaqchikel. Furthermore, our cur-

rent corpus is probably not large enough to accurately esti-

mate word-level informativity in any case (Cohen Priva,

2017, 2018). The examination of the average predictability

of a word in context is therefore beyond the scope of this

paper, and left for future research.

E. Model procedure

Linear mixed-effects models were used to predict the

duration of each word token using the variables outlined

above as predictors. The models were constructed in the sta-

tistical software platform R (R Core Team, 2017), using the

LMER function in the LME4 library (Bates et al., 2015).
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We fit two separate mixed models for our analysis. In

study I, we fit a model for word duration over lexical words

alone. In study II, we fit a separate model for word duration

over all monomorphemic function words. Polymorphemic

function words were not analyzed, as there were not suffi-

cient word tokens or types to analyze durational effects for

words of this class (Table I).

While Barr et al. (2013) recommend fitting the most

complex random effects structure justified by the data, we

chose not to follow this recommendation because it has been

recently suggested that such models may not converge.

Furthermore, even when models with maximal random

effects structures do converge, they are not always readily

interpretable (Baayen et al., 2017), and the inclusion of a

large number of random effects can also lead to a reduction

of statistical power (Matuschek et al., 2015). Instead, we

specified our models’ structures (fixed and random) by

focusing on the variables of greatest theoretical interest,

within the confines of a conservative model design.

In study I (lexical words), the fixed effects included base-

line duration, syllable count, speech rate, word position (initial

vs non-initial), word position (final vs non-final), word fre-

quency, backward and forward bigram probability, neighbor-

hood density, phonotactic probability, and morpheme count.

We also included interaction terms between morpheme count

and each of word frequency, forward bigram probability,

backward bigram probability, neighborhood density, and pho-

notactic probability. In study II, which focused on monomor-

phemic function words, the fixed effects included all of the

above, with the exception of morpheme count and the interac-

tion terms between morpheme count and each of the five vari-

ables related to contextual predictability (word frequency,

backward and forward bigram probability, neighborhood den-

sity, and phonotactic probability).

Tables II and III summarize the distribution of the varia-

bles (both word duration and the predictors) in studies I and

II, respectively. The tables show the mean, standard devia-

tion, interquartile range and range (max-min) for the contin-

uous variables and count information for the categorical

variables.4

In addition to these fixed effects, we included by-word

random intercepts and slopes, and by-participant random

intercepts and slopes, to take into account durational vari-

ability which might reflect idiosyncratic properties of indi-

vidual word types or individual speakers. Given the size of

our data set, we were not able to fit random slopes for all the

variables included in our fixed effects structure. Instead, we

focused on the two bigram probability effects (forward word

bigram probability and backward word bigram probability),

which seem from past work to have a stronger effect on

word duration than context-free predictors such as word fre-

quency. The inclusion of by-word and by-participant random

slopes for backward and forward bigram probability ensure

that our estimates of the effects of these factors will be rela-

tively conservative (Barr et al., 2013). These were the only

random slopes included in our model, and were never

dropped during model selection (see below). For the model

structure of the initial models, see section 1 of the Appendix.

To avoid overfitting our data, these initial models were

then simplified following a step-down, data-driven model

selection procedure which compared nested models using

the backward best-path algorithm (e.g., Gorman and

Johnson, 2013; Barr et al., 2013), making use of the ANOVA()

function and likelihood ratio test provided by R. The two

bigram probability fixed effects (the individual terms) and

the two random slopes of bigram probabilities by partici-

pants and items were never considered for exclusion, since

the key interest of this study is the effect of contextual pre-

dictability. In other words, only the control variables and the

higher order variables (if any) were considered for exclusion.

The random intercepts for both Participant and Word were

never considered for exclusion, as it is standard practice to

include these random effects in models of this type (e.g.,

Jaeger, 2008). We chose a relatively liberal threshold of

a¼ 0.1 to be conservative in our model selection procedure,

preferring to include potentially relevant predictors in the

final model if they were reasonably well-justified. A set of

models which are minimally simpler than the superset model

(i.e., with one less predictor or interaction term) were gener-

ated and were then compared with the superset model. If the

likelihood ratio test resulted in a p-value of 0.1 or higher,

the simpler model was taken to be an improvement on

the superset model. If there were multiple subset models

which exceeded this a threshold, the subset model with the

strongest evidence (the highest p-value) was selected. The

TABLE II. Descriptive statistics of variables in study I.

Mean SD IQR Range

Word duration (log10, ms) 2.640 0.164 0.225 1.396

Baseline duration (log10, ms) 2.640 0.107 0.150 0.614

Syllable count (log10) 0.300 0.174 0.176 0.699

Speech rate (number of syllables per s) (log10) 0.693 0.093 0.119 0.808

Word frequency (log10) 2.164 0.815 1.086 3.710

Neighborhood density (log10) 0.900 0.327 0.415 1.644

Phonotactic probability (log10) �5.345 1.921 2.393 12.642

Forward bigram probability (log10) �3.069 1.181 1.478 6.097

Backward bigram probability (log10) �3.103 1.168 1.440 6.227

Morpheme count (log10) 0.277 0.206 0.477 0.699

Word position (Initial vs Non-initial) Initial: 370; Non-initial: 2375

Word position (Final vs Non-final) Final: 717; Non-final: 2028

Disfluency True: 838; False: 1907

TABLE III. Descriptive statistics of variables in study II.

Mean SD IQR Range

Word duration (log10, ms) 2.299 1.069 0.316 1.412

Baseline duration (log10, ms) 2.299 0.133 0.163 0.895

Syllable count (log10) 0.051 0.127 0.000 0.477

Speech rate (number of syllables per s) (log10) 0.697 0.093 0.115 0.935

Word frequency (log10) 3.754 0.927 1.219 4.943

Neighborhood density (log10) 1.507 0.306 0.171 1.839

Phonotactic probability (log10) �2.462 1.414 1.385 11.723

Forward bigram probability (log10) �1.774 1.017 1.288 6.209

Backward bigram probability(log10) �1.767 1.043 1.384 6.034

Word position (Initial vs Non-initial) Initial: 803; Non-initial: 4420

Word position (Final vs Non-final) Final: 560; Non-final: 4663

Disfluency True: 1541; False: 3682
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step-down procedure began from the higher order fixed

effects (the interaction terms) to the lower order fixed effects

(the individual terms). The principle of marginality was

adhered to, such that a lower order fixed effect was kept if

there were a higher order fixed effect including it in the

model. For the model structure of the best models, see section

1 of the Appendix. The condition numbers for our final mod-

els in studies I and II were 4.56 and 4.38, respectively, again

posing basically no danger of collinearity between predictors.

After each model was fitted, it underwent a process of

model criticism. To ensure the normality of the residuals of

the model, the dataset used to fit each model was trimmed by

removing data points with an associated residual at least 2.5

standard deviations above or below the mean. Each of these

trimmed datasets was then refitted using the original model

structure. No more than 3% of the data points was trimmed

in each dataset.

The statistical significance of the individual predictors

in all the models was evaluated by bootstrapping. This is

especially appropriate given the size of our dataset, which is

potentially too small to reliably estimate p-values for predic-

tors without bootstrap estimation. Bootstrapping was carried

out using the BOOTMER function in the LME4 library. 1000

bootstrap simulations were performed for each model.

Bootstrapped p-values and confidence intervals at 95% were

computed for each predictor in each model. We follow the

conventional a-level of 0.05 for significance. Therefore, we

will refer to any p-value below 0.05 as “significant.”

However, given the fact that we are dealing with small data,

and some effects might reach significance with more data,

we refer to effects that have a p-value greater than 0.05 but

smaller than 0.1 as “near-significant.”

III. RESULTS

A. Study I

Table IV summarizes the fixed effects in model 1, which

is fitted over lexical words.

We first examine the non-predictability control varia-

bles. Three of the control variables for word duration were

highly significant in the expected directions: these are base-

line duration (b: 0.4786, SE¼ 0.0283, p< 0.001), syllable

count (b: 0.1777, SE¼ 0.0281, p< 0.001) and speech rate

(b: �0.3913, SE¼ 0.0118, p< 0.001). Unsurprisingly, the

longer the baseline (expected) duration, the longer the word

duration and the faster the speech rate, the shorter the word

duration. While we expected to find a negative correlation

between word duration and syllable count (i.e., polysyllabic

shortening), our results suggest a positive correlation instead.

This holds true even when the segmental composition of the

word (our baseline duration measure) and other factors are

taken into account. It may be that syllable count is capturing

some segment-based durational variance that our baseline

duration measure has failed to capture, perhaps having to do

with changes in segmental duration that are related to sylla-

ble shape (e.g., disyllabic CVCV words like xeb’e [S-e- e]

“they went” might be longer than monosyllabic CCVC

words like xb’€ıx [S- IS] “it was said,” even though both

words have four segments each; see e.g., Katz, 2012).

Words in utterance-initial position showed no significant

differences relative to non-initial words, since this predictor

was dropped from the final model. However, utterance-final

words were lengthened relative to non-final words (b:

0.2916, SE¼ 0.0256, p< 0.001). That is, phrase-final length-

ening was observed, but not phrase-initial lengthening. Of

the remaining non-predictability control variables, disflu-

ency and morpheme count did not make a significant contri-

bution to predicting word duration and were dropped from

the model.

Having examined the control variables unrelated to con-

textual predictability, we move on to the three predictability-

related control variables. Context-free word frequency and

phonotactic probability did not make a significant contribu-

tion to predicting word duration, and were dropped from the

model. As noted above, the effect of context-free word

frequency on duration has been negligible in past work

which also takes into account contextual measures of pre-

dictability (i.e., bigram probability; e.g., Seyfarth, 2014).

The effect of neighborhood density was significant (b:

�0.0486, SE¼ 0.0179, p¼ 0.008), indicating that the more

neighbors a word has, the shorter its word duration is. This

faciliatory effect is in line with previous speech production

studies (e.g., Vitevitch et al., 2004; Goldrick and Larson,

2008). Phonotactic probability was not a significant predictor

TABLE IV. Fixed effects summary for model 1 (lexical words). b: coefficient; SE: standard error; t: t-value; CILower95% and CIUpper95%: 95% confidence inter-

vals of the coefficient from bootstrapping; pBootstrapped: p-value from bootstrapping simulations; all continuous variables were first log-transformed (base 10)

then z-score normalized, and all categorical predictors were sum-coded.

b SE t CILower95% CIUpper95% pBootstrapped

Baseline duration 0.4786 0.0283 16.9176 0.4222 0.5340 <0.001a

Syllable count 0.1777 0.0281 6.3099 0.1210 0.2359 <0.001a

Speech rate �0.3913 0.0118 �33.1016 �0.4138 �0.3683 <0.001a

Word position (Final vs Non-final) 0.2916 0.0256 11.3795 0.2399 0.3427 <0.001a

Neighborhood density �0.0486 0.0179 �2.7108 �0.0846 �0.0131 0.008b

Bigram prob. (given previous) �0.0383 0.0154 �2.4780 �0.0698 �0.0075 0.02c

Bigram prob. (given following) 0.0062 0.0158 0.3915 �0.0244 0.0368 0.718d

aLevel of significance: p� 0.001.
bLevel of significance: p� 0.01.
cLevel of significance: p� 0.05.
dNot significant.
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of word duration; unlike Gahl et al. (2012), we failed to find

a faciliatory effect of phonotactic likelihood (the more pho-

notactically probable a word is, the shorter its duration).

Finally, we examined the two contextual bigram proba-

bility variables (probability given the previous/following

word). While backward bigram probability (probability given

the following word) did not reach significance (b¼ 0.0062,

SE¼ 0.0158, p¼ 0.718), forward bigram probability (proba-

bility given the previous word) did (b¼�0.0383,

SE¼ 0.0154, p¼ 0.02). The coefficient for forward bigram

probability suggests that the more predictable a word is given

the previous word, the shorter its duration. To sum up, two

out of five of the predictability variables reached significance,

and did so in the direction predicted by the probabilistic

reduction hypothesis.

Finally, we examined the five interaction terms. None of

them make a significant contribution to predicting word

duration and were dropped from the model. This suggests

that none of the predictability variables have a significant

interaction with morpheme count. In particular, neighbor-

hood density and forward bigram probability, themselves

significant predictors, did not change with the degree of mor-

phological complexity.

B. Study II

Table V summarizes the fixed effects of model 2, fitted

over monomorphemic function words. Like study I, baseline

duration, syllable count and speech rate were all significant

predictors, with effects in the expected direction (the longer

the baseline duration, the longer the word duration,

b¼ 0.4034, SE¼ 0.0366, p< 0.001; the higher the syllable

count, the longer the word duration, b¼ 0.1301, SE¼ 0.0349,

p< 0.001; and the faster the speech rate, the shorter the word

duration, b¼�0.2806, SE¼ 0.0098, p< 0.001).

Both positional effects were significant, indicating that

monomorphemic function words were lengthened in both

utterance-final (b¼ 0.1264, SE¼ 0.0266, p< 0.001) and

utterance-initial position (b¼ 0.5297, SE¼ 0.0310,

p< 0.001). The finding of utterance-initial lengthening dif-

fers from the results of study I (lexical words). Disfluency

was also a significant variable (b¼ 0.1337, SE¼ 0.0205,

p< 0.001), indicating that if a word is adjacent to a silent

pause, it is lengthened relative to other words (again, unlike

our finding for lexical words in study I).

Having examined our non-predictability control variables,

we move onto the five predictability variables. Just as in study

I, word frequency and phonotactic probability were not signifi-

cant predictors of word duration in study II and were dropped

from the model. Unlike study I, neighborhood density did not

reach significance, and was dropped from the model. Although

forward bigram probability was not significant, it was in the

expected direction (b¼�0.0067, SE¼ 0.165, p¼ 0.66).

Backward bigram probability, in contrast, was a significant pre-

dictor of word duration (b¼�0.0734, SE¼ 0.0230, p< 0.01).

IV. STUDY III

Verbs in Kaqchikel are inflected for aspect, a grammati-

cal category which indicates the relationship between some

reference time and the time of the event described by the

verb (e.g., x-in-tz’€et “I see it (before some contextually

specified reference time)” (ASP-1SG.ERG-see); e.g.,

Reichenbach, 1947; Robertson, 1992). In Kaqchikel, there

are three basic verbal aspect categories: x- /S-/ COMPLETIVE,

y-/n- /j-/�/n-/ INCOMPLETIVE, and k-/t- /k-/�/t-/ POTENTIAL [the

2nd member of each /A/�/B/ pair occurs before phonetically

null 3SG.ABS agreement, e.g., n-1-in-tz’€et “I see it (ASP-

3SG.ABS-1SG.ERG-see)”].

In this study, we asked whether the duration of aspect

markers can be predicted from their contextual probability.

As Kaqchikel is a morphologically rich language, and one

with obligatory aspect, person, and number inflection on

verbs, aspect markers provide a potentially fruitful testing

ground for the hypothesis that contextual predictability

affects phonetic duration at the level of the individual mor-

pheme, and not just at the level of the word. This question is

important to the extent that morphologically rich languages

might be expected to show different patterns of contextual

predictability than languages with relatively analytic mor-

phological systems (Sec. I).

In Kaqchikel, aspect markers can be followed by a range

of different morphemes. They are commonly followed

by ergative or absolutive agreement markers (e.g., xe’atin
[S- -atin] “they (3PL.ABS) bathed” or xawatinisaj [S-aw-atin-

is-av] “you (2SG.ERG) bathed him/her/it”). They can also be

TABLE V. Fixed effects summary for model 2 (monomorphemic function words). b: coefficient; SE: standard error; t: t-value; CILower95% and CIUpper95%:

95% confidence intervals of the coefficient from bootstrapping; pBootstrapped: p-value from bootstrapping simulations; all continuous variables were first log-

transformed (base 10) then z-score normalized, and all categorical predictors were sum-coded.

b SE t CILower95% CIUpper95% pBootstrapped

Baseline duration 0.4034 0.0366 11.0123 0.3332 0.4758 <0.001a

Syllable count 0.1301 0.0349 3.7255 0.0604 0.1969 <0.001a

Speech rate �0.2806 0.0098 �28.6109 �0.3003 �0.2613 <0.001a

Word position (Initial vs Non-initial) 0.1264 0.0266 4.7490 0.0760 0.1778 <0.001a

Word position (Final vs Non-final) 0.5297 0.0310 17.1021 0.4661 0.5908 <0.001a

Disfluency 0.1337 0.0205 6.5046 0.0948 0.1744 <0.001a

Bigram prob. (given previous) �0.0067 0.0165 �0.4111 �0.0389 0.0258 0.66b

Bigram prob. (given following) �0.0734 0.0230 �3.1801 �0.1204 �0.0260 0.002c

aLevel of significance: p� 0.001.
bNot significant.
cLevel of significance: p� 0.01.
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followed by verb stems directly, if the verb is intransitive and

has a 3SG.ABS subject (e.g., xatin [S-atin] “he/she/it bathed”).

We focused on three aspect markers in this study: /S-/

COMPLETIVE, and both realisations of /j-/�/n-/ INCOMPLETIVE.

The aspect markers /k-/�/t-/ POTENTIAL are substantially less

frequent in our corpus than /S-/ or /j-/�/n-/, which makes it

difficult to reliably compute the effect of contextual predict-

ability on the duration of these morphemes. For that reason,

we do not analyze the duration of /k-/�/t-/ here.

A. Materials and methods

1. Morpheme duration data

The phonetic durations of the aspect markers in our

audio corpus were measured using the segment-level (i.e.,

“phone-level”) annotations described in Sec. II A. The data-

set is summarized in Table VI, which contains the number of

distinct verb tokens and types in the audio corpus divided by

morpheme count. In total, the durations of aspect markers

from 1016 verb tokens (199 verb types) were included in the

analysis. Of these 1016 verb tokens, 375 were marked with

/S-/ COMP, 506 with /n-/ INC.3SG.ABS, and 135 with /j-/ INC.

The phone-level segmentations produced by our forced

alignment are imperfect, and contain errors. These errors are

not likely to be evenly distributed across segments.

Segmentation of voiceless fricatives and nasals is a much

easier task than the segmentation of glides (e.g., Turk et al.,
2006; DiCanio et al., 2013), and so we expected (incorrectly,

it turns out) that our automated segmentation for /j-/ INC

would be less accurate than our segmentation for /S-/ COMP

and /n-/ INC.3SG.ABS.

As a rough assessment of the accuracy of our forced

alignment model across segment types, we hand-corrected a

subset of the TextGrids produced by forced alignment, and

compared them to the original, automatically aligned out-

put.5 The median alignment error for /S/ (as it occurred in

any morpheme) was 10 ms; for /n/, 8.5 ms; and for /j/, 10 ms.

For /n/, 50% of automated alignments were within 1 ms of

our hand-corrected standard; this 1 ms error criterion was

met by 45% of alignments for /j/, and 39% of alignments for

/S/. If we set this error criterion to 20 ms, it is met by 80% of

alignments for /n/ and /S/, and by 70% of alignments for /j/.

Within each category, errors appear to be normally distrib-

uted, with a large peak below 10 ms and a much thinner,

long tail extending upward (particularly for /j/). These error

rates compare favorably to interannotator agreement for

manually segmented audio recordings [see Johnson et al.
(2018), p. 83 for discussion].

Given that glides are difficult for both human coders

and forced aligners to segment, it is possible that the rela-

tively low error rate for /j/ reflects the fact that our hand-

corrected alignments simply contain the same errors that

were produced by the automatic alignment procedure. Our

qualitative results, described below, remain the same

whether or not we include y- /j-/ INC in our analysis of dura-

tion and contextual predictability for aspect markers.

2. Probabilistic language model

In order to estimate morpheme-level measures of con-

textual predictability, we needed a morphologically parsed

corpus of Kaqchikel. At the time of writing, a morphological

parser has not yet been developed for Kaqchikel. Manually

parsing our entire written corpus would be prohibitively

time-consuming, and so we opted instead to use our smaller

spoken corpus to estimate contextual probability measures at

the morpheme level.

Given our focus on verbal aspect markers, we manually

parsed all the verbal word types containing aspect markers

which occurred in the spoken corpus (i.e., the same corpus

used for computing word and morpheme durations).

Morphological parsing was done by hand by one of the

authors (R.B.), a second-language learner of Kaqchikel and

a specialist in Mayan languages. Decisions about how to seg-

ment verb forms were generally easy to make, as Kaqchikel

is a fairly agglutinating language which normally has clear

boundaries between morphemes, particularly among verbal,

inflectional prefixes.

The token frequency of each word type was also com-

puted from the same spoken corpus used to measure the

duration of aspect markers, and their contextual probability.

A bigram language model was constructed using the

parsed spoken corpus of verbal word types. The model

describes the probability of each morpheme given the fol-

lowing morpheme in the same word (aspect markers are

always word-initial in Kaqchikel). The model construction

was carried out using the MIT Language Modelling

(MITLM) toolkit with the same parameters as the word

bigram language models described in Sec. II B. The resultant

model was used to estimate the backward bigram probability

of each aspect marker in the spoken corpus.

3. Variables included in the statistical models

In study III we fit linear mixed-effects models to our

data, attempting to predict the duration of the aspect markers

in our spoken corpus from their contextual predictability and

other control variables. As noted above, one measure of

morpheme-level contextual probability—backward mor-

pheme bigram probability, i.e., the likelihood of an aspect

marker given the following morpheme—was included as a

possible predictor of the duration of these aspect markers.

As found in studies I and II, variables related to word-

level predictability, as well as a number of control variables,

had an effect on word duration. To take these word-level

TABLE VI. Summary of word duration data used in study III. Type and token counts for verbs are shown divided by morpheme count across the table.

Morpheme count! All 1 2 3 4 5

Tokens Types Tokens Types Tokens Types Tokens Types Tokens Types Tokens Types

1016 199 0 0 241 46 667 115 93 31 15 7
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effects into account, in our analysis of the duration of aspect

markers we included the actual word duration as a control

variable. Furthermore, we included two segment-level con-

trol variables. The first segment-level control variable is the

target segment type. This variable allows the duration of

each of the three segment types (/S-/, /n-/, /j-/) to be different

from each other: for instance, we might expect the fricative

/S-/ to be longer than the sonorants /n-/ and /j-/. The second

segment-level control variable is whether the segment fol-

lowing the aspect marker is a consonant or a vowel, since

the aspect marker could have different phonetic properties in

different segmental contexts. This variable therefore serves

to control for possible differences in the syllabification of

the aspect markers across forms.

The two studies (Cohen, 2014, 2015) known to us which

directly examined the effect of morpheme-level contextual

predictability on reduction also included paradigmatic prob-

ability as a factor (Sec. I A). Both studies showed that para-

digmatic probability has an enhancement effect on the

phonetic realization of morphemes. However, paradigmatic

probability was not included in the current study, as we

would first like to establish whether the effect of contextual

predictability might exist at all at the morpheme level in

Kaqchikel. Furthermore, computing paradigmatic probabil-

ity reliably would most likely require a larger, more thor-

oughly parsed corpus of written or transcribed Kaqchikel.

The joint examination of both paradigmatic probability and

contextual predictability is therefore beyond the scope of

this paper, and left for future research.

The same model assessment steps were followed as in

Sec. II C 11. The continuous predictors were first log-

transformed (base 10) then z-score normalized. The categori-

cal predictors were sum-coded. To assess the possibility of

collinearity between predictors, the condition number was

computed. The condition number was 2.75, presenting no

danger of collinearity.

4. Model procedure

The same model procedure was followed as in Sec. II E.

Linear mixed-effects models were used to predict the dura-

tion of each aspect marker of each word token using the vari-

ables outlined above as predictors.

The fixed effects included word duration, target segment

(/S-/, /n-/, /j-/), following segment type (consonant vs vowel)

and backward morpheme bigram probability. In addition to

these fixed effects, we included random intercepts for word

and participant, as well as by-word and by-participant ran-

dom slopes for backward morpheme bigram probability.

These random slopes help ensure that our estimate of the

effect of backward morpheme bigram probability on the

duration of aspect markers will be relatively conservative.

Table VII summarizes the distribution of variables (both

aspect marker duration and the predictors) in study III. The

tables show the mean, standard deviation, interquartile range

and range (max-min) for the continuous variables and count

information for the categorical variables.

For the model structure of the initial model, see section

2 of the Appendix. This initial model was subjected to nested

model comparisons. Given that morpheme bigram probabil-

ity (following morpheme) is our key variable of interest, just

as in model 1 and model 2, only the control variables were

considered for exclusion to avoid overfitting. For the model

structure of the best model, see section 2 of the Appendix.

The condition number for our final model was 2.54, present-

ing essentially no danger of collinearity between predictors.

5. Results

Table VIII summarizes the fixed effects in model 3,

which is fitted over the duration of aspect markers

We first examine the control variables. The effect of

word duration was highly significant in the expected direc-

tion with a positive estimate (b¼ 0.4491, SE¼ 0.0272,

p¼ 0.001). Recall that our “word duration” factor in study

III is simply the actual duration of the full word: this variable

serves a proxy for other, more atomic factors which indepen-

dently contribute to word duration (e.g., speech rate, final

lengthening, etc.). Unsurprisingly, the longer the word dura-

tion, the longer the duration of the aspect marker. The over-

all effect of target segment type was significant in the nested

TABLE VII. Descriptive statistics of variables in study III.

Mean SD IQR Range

Marker duration

(log10, millisecond)

1.924 0.261 0.415 1.301

Word duration

(log10, millisecond)

2.643 0.164 0.217 1.396

Backward morpheme

bigram probability (log10)

�0.381 0.323 0.333 1.836

Target segment /S-/: 375; /n-/: 506; /j-/: 135

Following segment type Consonant: 351; Vowel: 665

TABLE VIII. Fixed effects summary for model 3 (aspect markers). b: coefficient; SE: standard error; t: t-value; CILower95% and CIUpper95%: 95% confidence

intervals of the coefficient from bootstrapping; pBootstrapped: p-value from bootstrapping simulations; all continuous variables were first log-transformed (base

10) then z-score normalized, and all categorical predictors were sum-coded.

b SE t CILower95% CIUpper95% pBootstrapped

Word duration 0.4491 0.0272 16.541 0.3959 0.5022 <0.001a

Target segment (/S-/ vs /n-/) �0.4981 0.1365 �3.6500 �0.7709 �0.2357 <0.001a

Target segment (/S-/ vs /j-/) �0.1077 0.1865 �0.5770 �0.4786 �0.2638 0.526b

Morpheme bigram prob. (following) �0.1451 0.0492 �2.9450 �0.2489 �0.0460 0.01c

aLevel of significance: p� 0.001.
bNot significant.
cLevel of significance: p� 0.05.
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model comparison, suggesting that target segments have sig-

nificantly different durations from each other. A further

examination of the two contrasts [/S-/ (base) vs /n-/ and /S-/

(base) vs /j-/] indicates that the aspect marker /n-/ was signif-

icantly shorter than the aspect marker /S-/ (b¼�0.4981,

SE¼ 0.1365, p< 0.001) but the aspect marker /j-/ was not

significantly different from the aspect marker /S-/

(b¼�0.1077, SE¼ 0.1865, p¼ 0.526). The following seg-

ment type (consonant vs vowel) was dropped from the

model, suggesting that potential differences in syllabification

did not significantly affect the duration of the aspect marker.

Having examined the control variables, we examine the

key variable of interest, backward morpheme bigram proba-

bility. Backward morpheme bigram probability was signifi-

cant in the expected direction with a negative estimate

(b¼�0.1451, SE¼ 0.0492, p¼ 0.01). This suggests that the

more probable the aspect marker is given the following mor-

pheme, the shorter its duration.

V. DISCUSSION

In this study, we set out to examine three questions: (a)

whether the probabilistic reduction effect can be found in

Kaqchikel, (b) whether the effect (if any) holds across differ-

ent morphological structures, and (c) whether the effect can

also be found between morphemes in the same word.

In studies I and II, we examined a number of predict-

ability variables. In study I, we found neighborhood density

and forward bigram probability to be significant variables in

our model of word duration for lexical words. In study II, we

found backward bigram probability (but not other predict-

ability variables) to have a significant effect on word dura-

tion for monomorphemic function words. In study I, we

specifically examined whether morphological complexity

interacts with any of our predictability variables, but found

no support for any such interactions. Comparing across stud-

ies I and II, it is clear that contextual predictability affects

word duration in different ways for lexical vs function

words. Overall, there is no strong evidence that morphologi-

cal complexity interacts with the probabilistic reduction

effect in Kaqchikel, but the effect of word class (lexical vs

functional) seems clear to the extent that studies I and II

uncovered qualitatively different results.

In study III, we shifted our focus from words to mor-

phemes; specifically we examined whether the contextual

predictability of aspect markers given the following mor-

pheme conditions their durations. We found a reduction

effect on the duration of morphemes conditioned by their

morpheme-level contextual predictabilities. Together, these

results support the existence of a probabilistic reduction

effect in Kaqchikel at both the word and morpheme levels.

In Secs. V A–V E, the effects of bigram probability,

phonotactic probability, neighborhood density, and morpho-

logical structure are examined more closely.

A. Bigram probability for lexical and function words

Bell et al. (2009) examined the effect of bigram predict-

ability on word duration in English, finding that backward

bigram probability and forward bigram probability have

different effects on function words and lexical words. For

lexical words, only backward bigram probability was signifi-

cant, while for function words, both bigram probability vari-

ables were significant, with backward bigram probability

showing a slightly stronger effect.

However, these two bigram probability variables

behaved differently in our study of Kaqchikel. Lexical

words show a significant effect of forward bigram proba-

bility (probability given the previous word), but not back-

ward bigram probability (probability given the following

word) (see Table IV). In contrast, function words show a

significant main effect of backward bigram probability

(probability given the following word), but not forward

bigram probability (probability given the previous word)

(see Table V). These differences between our results

and the results of Bell et al. (2009) are summarized in

Table IX.

We considered, first, whether the differences between

our findings and the results of Bell et al. (2009) might reflect

differences in how lexical and functional words are distrib-

uted in Kaqchikel and English. The left panel of Fig. 1 pro-

vides a density estimate plot of backward bigram probability

for function and lexical words, and the right panel of Fig. 1

provides a comparable density estimate plot for forward

bigram probability. Both figures show that function words

are in general more predictable from their context than lexi-

cal words (in terms of both backward and forward bigram

probability). This replicates the findings of (Bell et al., 2009,

Fig. 1, p. 98) regarding the relative contextual predictabil-

ities of lexical and function words in English. We conclude

that differences between the present study and the results of

Bell et al. (2009) are unlikely to reflect broad qualitative dif-

ferences in the relative contextual predictability of lexical vs

function words in Kaqchikel and English.6

We speculate that the discrepancy between our results

and the results of Bell et al. (2009) reflects, instead, syntactic

differences between English and Kaqchikel. Kaqchikel is a

head-initial language with basic V(O)S order in verb phrases

(e.g., [Xtutz’€et]v [ri tz’i’]o [Juan]s “Juan will see the dog”).

English, while also head-initial, has basic SV(O) order, and

further differs from Kaqchikel in that verbs are often pre-

ceded by functional auxiliaries like will, might, can, should,

etc. Additionally, in Kaqchikel possessors follow rather than

precede their possessums (e.g., rutz’i’ Juan “Juan’s dog”).7

Another major difference between Kaqchikel and English is

that subjects, objects, and possessors may actually be omit-

ted when recoverable from the context: for example, the

single-word verb phrase Xtutz’€et “he (i.e., Juan) will see it

(i.e., the dog),” is a perfectly acceptable sentence in

Kaqchikel, despite the absence of an overt object or overt

TABLE IX. A comparison between Bell et al. (2009) and the current study

regarding the effect of bigram probability on the duration of lexical and

function words; “>” denotes “is a stronger effect than.”

Study Lexical words Function words

Bell et al. (2009) Backward only Both; Backward>Forward

Current study Forward only Backward only
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subject. Possessive phrases are similar in that the possessor

need not be expressed overtly when recoverable from the

context, e.g., rutz’i’ “his (i.e., Juan’s) dog.” Last, subjects,

objects, and possessors can all be fronted (and often are) for

discourse-related reasons involving topic and focus (1) (e.g.,

F�ery and Ishihara, 2016; Aissen, 2017).

(3) [Ri a JuanPOSS]TOP, [ja ri PedroS]FOC x-tz’et-o’V [ru-tz’i’

___POSS]O ___S

the CLF Juan FOC the Pedro COMPL-see-AF 3SG.ERG-dog

“As for Juani, it was Pedro who saw hisi dog.”’

As a consequence, statistical dependencies which might

be robust in English (e.g., backward bigram probability of a

verb, given its following object) may be less stable in

Kaqchikel, a language with different syntactic organization

and greater syntactic flexibility than English.8

Evidence in favor of this conclusion comes from a com-

parison between the median log-transformed conditional

bigram probabilities in Bell et al. (2009) and the current

study (Table X). The median bigram probabilities for lexical

words in Kaqchikel are substantially lower than the median

bigram probabilities for lexical words in English, according

to Bell et al. (2009). This suggests that, on average, lexical

words are less predictable from context in Kaqchikel, as

would be expected if lexical words have freer distributions

in Kaqchikel than in English.

To get a sense of how much the syntax of Kaqchikel dif-

fers from the syntax of English, we can compare corpus fre-

quencies for some representative syntactic constructions. In-

depth corpus statistics are not available for most syntactic

constructions in Kaqchikel, but as a rough proxy we can con-

sider corpus frequencies reported for syntactic patterns in

other Mayan languages, which have similar (though cer-

tainly not identical) morpho-syntactic systems. However, in

drawing these comparisons it should be kept in mind that

there are likely real differences between Mayan languages

with respect to the frequencies of particular syntactic collo-

cations (e.g., England and Martin, 2003).

First, we consider argument drop, understood here as

the omission (i.e., non-pronunciation) of the subject or object

of a verb. Argument drop is ubiquitous in Kaqchikel and

other Mayan languages (e.g., Brody, 1984; Du Bois, 1987;

England, 1991; England and Martin, 2003 and work cited

therein). For Tojolabal, Brody (1984) reports that the most

common realization of transitive clauses is VO, with omis-

sion of the subject. In a study of argument realization in five

Mayan languages, England and Martin (2003) find that fewer

than 3% of transitive clauses contain both an explicit subject

and an explicit object (this figure is taken from Clemens and

Coon, 2018). V�azquez �Alvarez and Zavala Maldonado

(2014) report similar values for transitive clauses in the

Mayan language Ch’ol, and further note that most clauses

FIG. 1. Density estimate plot of back-

ward bigram probability (left) and for-

ward bigram probability (right) for

function words (in black) and lexical

words (in grey). The mean probability

value is plotted as a vertical dashed

line for each word type. Smaller abso-

lute values (closer to zero) indicate

higher probabilities.

TABLE X. Comparison of median log-transformed conditional bigram probabilities in Bell et al. (2009) and the current study. Smaller absolute values (closer

to zero) indicate higher median probability.

Word class Conditional bigram probability type Bell et al. (2009) (English) Current study (Kaqchikel) English/Kaqchikel ratio (¼ 10(Eng�Kaq))

Lexical Forward (given previous word) �2.41 �3.12 5.13

Functional Forward (given previous word) �1.52 �1.76 1.73

Lexical Backward (given following word) �2.52 �3.16 4.37

Functional Backward (given following word) �1.38 �1.81 2.70
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with intransitive predicates also have non-overt subjects [see

Clemens and Coon (2018) for additional references]. This is

in clear contrast with English, where argument drop is

sharply limited, albeit possible in certain highly restricted

contexts (for details, see Haegeman, 1987; Haegeman and

Ihsane, 1999, 2001; Nariyama, 2004, among others).

Relatedly, English and Kaqchikel differ in their use of

pronouns, a frequent type of functional item (e.g., Zipf,

1949). Verbal arguments are typically pronominal in

English: Gregory and Michaelis (2001); Michaelis and

Francis (2007) report that 95% of subjects and 34% of

objects in the switchboard corpus are pronouns (Godfrey

et al., 1992). Independent pronouns are much less common

in Kaqchikel, their referential function being largely sub-

sumed by agreement morphology on verbs, which indicates

the person and number of both subjects and objects, thereby

facilitating full argument drop (see again Brody, 1984; Du

Bois, 1987; England and Martin, 2003, and for Kaqchikel,

Maxwell, 2009).

With respect to word order, Kaqchikel is significantly

more flexible than English. As noted above, the basic word

order in Kaqchikel is V(O)S. However, this is not the most

frequent order in Kaqchikel, or in other Mayan languages

which have basic V(O)S or VS(O) order. More typical are

constructions in which the subject or object has been fronted

for reasons of topic or focus (3) (Aissen, 2017, and referen-

ces there). Particularly prevalent is SV(O) word order,

though all other permutations of {S,V,O} are attested with

some regularity (Brody, 1984).

Kubo et al. (2012) and Koizumi et al. (2014) report on a

production study in which 60 native speakers of Kaqchikel

verbally described scenarios that could be easily character-

ized using a transitive verb (e.g., a drawing of a boy chop-

ping wood). Speakers were asked to respond using simple

sentences. Of 715 responses which contained transitive

verbs, 75% (n¼ 533) had SVO order, 24% (n¼ 173) had

VOS order, and 1% (n¼ 9) had VSO order. The large pro-

portion of SVO responses likely reflects the fact that subjects

were always animate in these scenarios, and animacy facili-

tates topic fronting in Mayan languages (Brody, 1984;

Koizumi et al., 2014; Aissen, 2017; Clemens and Coon,

2018). Clemens et al. (2017) report very similar facts for an

analogous production study with 30 Ch’ol speakers: in 250

responses to broad-focus questions about simple illustrations

(e.g., “What is happening today?”), 57% (n¼ 142) had SVO

order, 42% had VOS/VSO order (n¼ 105), and 1% (n¼ 3)

had OVS order. These proportions shifted as the question

prompts encouraged focus on either the subject or object of

the clause: for example, questions like “Did the girl buy cha-

yote today?,” which favor contrastive focus on the object in

corresponding responses (“No, the girl bought beans today”),

conditioned 135/198¼ 68% OVS order.

Flexible word order is a historically old feature of

Kaqchikel and other Mayan languages. England (1991)

describes the results of an unpublished study of word-order

in 16th century Kaqchikel conducted by Jos�e Obispo

Rodr�ıguez Guaj�an [see also Maxwell and Hill (2010)]. In

that study, which examined two major colonial-era docu-

ments written in Kaqchikel, only 54 sentences were realized

with both an overt subject and an overt object. Of these 54

examples, 43 (80%) had at least one fronted argument (all of

SVO, OVS, SOV, and OSV occur in this corpus). Twenty-

seven of these 54 examples (50%) had fronted subjects, and

16 of these (30% of the total) had SVO, the majority pattern

(tied with OVS). This comparison with 16th century

Kaqchikel may underestimate the incidence of argument

fronting in modern Kaqchikel, which tends toward SV(O)

order more strongly than the older colonial variety (England,

1991). This preference for SV(O) in the modern language

can be seen in the results of Kubo et al. (2012); Koizumi

et al. (2014), discussed above.

Discourse fronting is of course a feature of modern

English as well (e.g., Anchovies, I cannot stand; see Birner

and Ward, 1998, 2009; Huddleston and Pullum, 2002;

Miller, 2008; F�ery and Ishihara, 2016, and many others). But

statistically speaking, the fronting of arguments does not

appear to be employed at the same rate in English as in

Kaqchikel. Speyer (2010, p.27) observes that topicalization

rates in English have declined sharply since the Old English

period, and by �1700 English texts show rates of object top-

icalization of about 5% or lower. Most topicalized objects in

modern English (90.5%) are also pronouns (Speyer, 2010, p.

84), while Mayan languages tend toward the topicalization

of full nominals (Aissen, 1992, 2017). Last, Roland et al.
(2007) find that clefting, a discourse fronting construction

related to focus (e.g., It is anchovies that I cannot stand),

occurs in less than 0.1% of all sentences in English. While

further corpus work is needed to firmly establish statistical

differences in discourse fronting patterns in Kaqchikel and

English, the available data suggests that discourse fronting is

used in a qualitatively different way in the two languages.

There are of course many other syntactic differences

between the two languages which could be relevant for con-

ditioning the effects that backward and forward bigram prob-

ability have on the duration of lexical words. We highlight

argument drop, clausal syntax, and possessive constructions

here because (i) these phenomena typically involve multiple

lexical words in sequence; (ii) the order of elements in these

contexts often differs between Kaqchikel and English, with

Kaqchikel tending toward greater flexibility than English;

and (iii) these are core aspects of the syntax of Kaqchikel

and its use in discourse. As such, it may be that syntactic dif-

ferences between these and other constructions account for

the observed differences in how bigram probabilities condi-

tion the duration of lexical words in English vs Kaqchikel.

While we believe that this is an entirely reasonable view, we

acknowledge that this suspicion remains to be confirmed in a

more empirically rigorous manner.

To be sure, we are not suggesting that any syntactic dif-

ference whatsoever between Kaqchikel and English could

lead to qualitatively different patterns of contextual predict-

ability in the two languages. Only those syntactic differences

which have substantial, systematic effects on the distribu-

tions of words and collocations should have this effect.

The permutation of verbs and their arguments, highlighted

above, is exactly a difference of this kind. Specific verbs

tend to co-occur with specific types of arguments: in

English, assassinate requires an animate subject (*A falling
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tree assassinated the senator); wonder requires a clausal

complement (John wondered what time it was vs *John won-
dered the time); and the musician is more likely to be the

subject of the verb played than its object (e.g., Gahl and

Garnsey, 2004; Kurumada and Jaeger, 2015; White and

Rawlins, 2016, and references there). Intuitively, these

dependencies should affect the transitional probabilities that

hold between verbs and adjacent words. But in languages

like Kaqchikel, in which word order is different and/or freer,

there is no reason to expect verb-argument dependencies to

affect transitional probabilities in exactly the same way as in

English. Again, this seems to us to be a reasonable supposi-

tion, and one which should be investigated in greater detail

in future work.

A nagging issue which we do not address here concerns

the fact that speech production is essentially “future-

oriented.” For example, anticipatory coarticulation is typi-

cally stronger than perseveratory (hold-over) coarticulation,

and anticipatory speech errors are more common than per-

severatory speech errors. Such facts suggest that speech pro-

duction is more strongly influenced by upcoming words than

by previously uttered words (see Manuel, 1999; Hyman,

2002; Hansson, 2010; Garrett and Johnson, 2013 for discus-

sion and further references). We might therefore expect that

backward bigram probability should affect word duration in

all languages, due to entirely general facts about speech

planning and speech production. On this view, the lack of an

effect of backward bigram probability on the duration of lex-

ical words in Kaqchikel remains unexplained, despite the

syntactic differences between English and Kaqchikel that we

pointed to above. We leave a deeper investigation of this

issue to future work.

B. Phonotactic probability and neighborhood density

As noted in Sec. II C 9, phonotactic probability and

neighborhood density are known to be correlated, particularly

for short words. Gahl et al. (2012) examined the effect of

neighborhood density and phonotactic probability on the dura-

tion of /CVC/ words in English. They found that neighbor-

hood density had a consistent, reductive effect on word

duration, over and above the effect of phonotactic probability.

On the other hand, the effect of phonotactic probability was

less consistent in their study, and was highly sensitive to

details of the statistical model used to analyze word duration.

In our study, the effect of neighborhood density differs

depending on the word class (lexical vs functional). In study

I, neighborhood density was a significant predictor

(b¼�0.0486, p¼ 0.008). However, neighborhood density

did not emerge as significant in study II, and was dropped

from the model. In both studies, phonotactic probability was

insignificant and was dropped from the model. Our finding

for lexical words (study I) match those of Gahl et al. (2012),

with neighborhood density, but not phonotactic probability,

acting as a significant predictor of word duration.

C. Positional effects and disfluency

Study I found that lexical words are lengthened in

utterance-final position, while study II found that function

words are lengthened in both utterance-final and utterance-

initial position. We suspect that this difference reflects the

fact that, on average, function words are shorter than lexi-

cal words in Kaqchikel. Previous work on lengthening at

domain edges suggests that domain-initial lengthening has

a smaller temporal scope than domain-final lengthening.

Specifically, domain-initial lengthening primarily affects

single segments (Byrd, 2000; Cho and Keating, 2001;

Lehnert-LeHouillier et al., 2010), while domain-final

lengthening has been found to extend over several sylla-
bles (e.g., Shattuck-Hufnagel and Turk, 1998). On average,

monomorphemic function words contain fewer syllables

than lexical words in Kaqchikel (function words, mean-

¼ 1.25, sd¼ 0.52; lexical words, mean¼ 2.15, sd¼ 0.78).

As a consequence, positional lengthening will have a

proportionally greater effect on word duration for function

words (shorter) than for lexical words (longer), which

may explain why the effect of utterance initial vs non-

initial position was only observed for the function words in

study II.

Study II also found that function words were length-

ened when adjacent to a disfluency (here, a silent pause in

utterance-medial position). This effect was not replicated in

the analysis of lexical words in study I. We have not found

any prior work that shows a difference between lexical

words and function words in the extent of lengthening due

to silent pauses. Bell et al. (2003) found that function words

were lengthened when adjacent to silent pauses, but they

did not investigate the effect of disfluency on lexical words.

Bell et al. (2009) investigated the reduction of both func-

tion words and lexical words, but explicitly excluded any

words adjacent to disfluencies (including silent pauses). We

again speculate that the contextual lengthening of words

adjacent to a disfluent pause has an effect for function

words, but not lexical words, because function words tend

to be shorter.

D. Morphological effects

Morphological complexity had no influence on the

probabilistic reduction effect in our study. This lack of an

interaction is surprising considering the rich morphology of

Kaqchikel. Several speculations can be made about the lack

of an interaction. First, the failure to find any effect of mor-

phological complexity might simply be due to a lack of sta-

tistical power, given the size of our data. Study I examined

2745 tokens, which is very small compared to other similar

studies on English (e.g., Seyfarth, 2014 examined 41 167

word tokens from the BUCKEYE corpus, and 107 981

word tokens from the SWITCHBOARD corpus). Future

examinations of our entire spoken corpus (about 40 000

word tokens) should be able to better assess the effect of

morphological complexity on the probabilistic reduction

effect. Second, as far as we are aware, no previous studies

have reported an interaction between morphological com-

plexity and probability measures when modeling phonetic

reduction. It may simply be the case that probabilistic

reduction effects do not interact directly with morphologi-

cal complexity. Third, it could be that our definition of
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morphological complexity is too crude. In particular, our

measure of morpheme count is derived from traditional lin-

guistic analysis (e.g., Harris, 1951), and ignores the possi-

bility that speakers may store some morphologically

complex words as unanalyzed wholes, or even just partially

decomposed forms, in their mental lexicon (Hay, 2001;

Plag, 2003, Chaps. 3,4).

E. Inter-morpheme predictability

While we did not find an interaction between morpho-

logical complexity and the probabilistic reduction effect in

Sec. V D, this does not rule out the possibility that morpho-

logical structure plays a role in conditioning probabilistic

reduction. In study III we addressed this question more

directly by examining the effect of contextual morpheme

predictability on morpheme duration.

Study III showed that, after controlling for word duration as

well as segmental quality, the predictability of the aspect

markers /S-/, /n-/, /j-/ given the following morpheme has a signif-

icant, reductive effect on the duration of the aspect marker itself.

This is consistent with the findings of Cohen (2014) regarding

the English subject-verb agreement suffix -s, and Cohen (2015)

on Russian verbal inflection suffixes. We therefore found con-

textual reduction effects at the level of morphemes (study III) as

well as the level of words (studies I and II).

VI. CONCLUSION

Our paper set out to examine the probabilistic reduc-

tion effect in Kaqchikel with several goals in mind. First,

the general lack of research on the probabilistic reduction

effect in languages with complex morphology motivated

us to assess the effect in Kaqchikel, a language with rela-

tively rich morphology when compared to well-studied

majority languages such as English. Second, of all the fac-

tors previously shown to probabilistically condition word

duration, we paid particular attention to contextual predict-

ability at the word level (backward and forward bigram

probabilities). This was motivated by the observation that

many functional items which are realized as independent

words in English are instead realized as affixes in

Kaqchikel. We hypothesized that this difference might

affect the distribution of contextual probabilities between

words in the two languages. In addition, we examined a

number of other predictability-related factors, essentially

as controls (phonotactic probability, neighborhood density,

and word frequency). Third, since most studies (with the

exception of Bell et al., 2009, on English) have examined

only lexical words in research on the probabilistic reduc-

tion effect, we evaluated whether the factors involved in

the reduction effect differ by word class (lexical vs func-

tion words). Fourth, given the rich morphology of

Kaqchikel, and the fact that very few studies have exam-

ined the effect of morpheme probability on morpheme

duration, we shifted our attention to contextual predictabil-

ity at the morpheme level, with a focus on aspect markers.

We found, first, that contextual predictability (backward

and forward bigram probability) had a significant effect on

word duration. We found the same type of effect for

neighborhood density, with higher neighborhood density

predicting higher degrees of shortening (albeit only for lexi-

cal words). While neighborhood density is not, strictly

speaking, a measure of contextual predictability, it is a lexi-

cal variable which depends crucially on sublexical structure

(i.e., the phonemic composition of the word). This finding is

consistent with a large number of past studies that have

found that both contextual predictability and context-free

lexical variables conspire to probabilistically reduce a

word’s duration. Most importantly, we replicated these

effects in a morphologically complex language, in which we

might expect contextual measures of predictability, as well

as neighborhood density, to behave differently than in

English or Dutch (see Bennett et al., 2018 for related discus-

sion). Furthermore, many of these effects seem to depend on

word class, with some effects emerging as significant for lex-

ical words but not function words, or vice versa. Last, we

found that contextual predictability at the morpheme level

has a significant effect on morpheme duration. This finding

is consistent with the few existing previous studies on

morpheme-level predictability. We therefore found effects at

multiple levels (between words and between morphemes),

and we think that investigating those findings and their rela-

tion to each other, especially in heavily affixing languages,

will be important for understanding how contextual probabil-

ity affects duration. We look forward to the further develop-

ment of corpora for Kaqchikel and other Mayan languages,

which will make it possible to investigate inter-morphemic

predictability effects in even greater detail.

While our findings are broadly consistent with many

previous studies of the probabilistic reduction effect (primar-

ily on English), some of the details of our results are differ-

ent. For instance, backward bigram probability was less
robust than forward bigram probability with lexical words.

Precisely these differences highlight the importance of

examining the probabilistic reduction effect in languages

beyond English, Dutch, and other standardly studied lan-

guages—particularly languages which, like Kaqchikel, have

morpho-syntactic characteristics which distinguish them

from the majority, Indo-European languages most com-

monly investigated in experimental and corpus linguistics.

Methodologically, we have demonstrated that even for

languages with limited corpus resources (e.g., small amounts

of digitized text), it is possible to examine the interplay

between lexical statistics and the phonetic details of speech

production in naturalistic contexts. Given that “big data” is

unavailable for the vast majority of the world’s languages,

we hope that this paper will inspire further examination of

the probabilistic reduction effect in other minority lan-

guages, across a range of typological profiles, even if the

size and quality of the data currently available for those lan-

guages is less than ideal.

APPENDIX: MODEL STRUCTURES

1. Study I and study II

The regression structure for the initial model for model

1 (fitted over lexical words) is shown below.
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Duration � Baseline duration þ Syllable count þ Speech

rate þ Word position (Initial vs non-initial) þ Word posi-

tion (Final vs non-final) þ Disfluency þ Word frequency

þ Neighborhood density þ Phonotactic probability

þ Bigram probability (previous word) þ Bigram probabil-

ity (following word) þ Morpheme count þ Morpheme

count:Word frequency þ Morpheme count:Neighborhood

density þ Morpheme count:Phonotactic probability

þ Morpheme count:Bigram probability (previous word)

þ Morpheme count:Bigram probability (following word)

þ (1 þ Bigram probability (previous word) þ Bigram

probability (following word) j Participant) þ (1

þ Bigram probability (previous word) þ Bigram proba-

bility (following word) jWord).

The regression structure for the initial model for model 2

(fitted over the monomorphemic function words) differs

from the above structure in that it does not include any fixed

or random effects which have Morpheme count as a term,

because model 2 is restricted to monomorphemic function

words. The structure for model 2 is shown below.

Duration�Baseline duration þ Syllable count þ Speech

rate þ Word position (Initial vs non-initial) þ Word

position (Final vs non-final) þ Disfluency þ Word fre-

quency þ Neighborhood density þ Phonotactic probabil-

ity þ Bigram probability (previous word) þ Bigram

probability (following word) þ (1 þ Bigram probability

(previous word) þ Bigram probability (following word) j
Participant) þ (1 þ Bigram probability (previous word)

þ Bigram probability (following word) jWord).

The regression structure for the best model for model 1 (fit-

ted over lexical words) is shown below.

Duration � Baseline duration þ Syllable count þ Speech

rate þWord position (Final vs non-final) þ Neighborhood

density þ Bigram probability (previous word) þ Bigram

probability (following word) þ (1 þ Bigram probability

(previous word) þ Bigram probability (following word)

j Participant) þ (1 þ Bigram probability (previous word)

þ Bigram probability (following word) jWord).

The regression structure for the best model for model 2 (fit-

ted over the monomorphemic function words) is shown

below.

Duration � Baseline duration þ Syllable count þ Speech

rateþWord position (Initial vs non-initial) þWord posi-

tion (Final vs non-final) þ Disfluency þ Bigram proba-

bility (previous word) þ Bigram probability (following

word) þ (1 þ Bigram probability (previous word)

þ Bigram probability (following word) j Participant)

þ (1 þ Bigram probability (previous word) þ Bigram

probability (following word) jWord).

2. Study III

The regression structure for the initial model for model

3 is shown below.

Marker duration � Word duration þ Target segment

þ Following segment type þ Morpheme bigram

probability (following morpheme) þ (1 þ Morpheme

bigram probability (following morpheme) j Participant)

þ (1 þ Morpheme bigram probability (following mor-

pheme) jWord).

The regression structure for the best model for model 3 is

shown below.

Marker duration � Word duration þ Target segment

þ Morpheme bigram probability (following morpheme)

þ (1 þ Morpheme bigram probability (following mor-

pheme) j Participant) þ (1 þ Morpheme bigram proba-

bility (following morpheme) jWord)

1Glossing conventions follow the Leipzig Glossing Rules (2015) and the

Mayan-specific conventions set out in Bennett et al. (2016).
2Note that the transcriptions of the spoken corpus formed part of the larger

written corpus that was used to compute the language models. Since all of

the bigrams in the spoken corpus were thus attested in the written corpus,

the estimates of the backward and forward bigram probability do not

depend on the smoothing parameters used to compute the language

models.
3The question of whether we should be normalizing phonotactic probability

by word length is both a philosophical issue (see Daland, 2015) and an

empirical issue. Bailey and Hahn (2001) compare different phonotactic

probability measures, and find that a non-normalized measure of phono-

tactic probability (which penalizes longer words more harshly than shorter

words) provides a modest but consistent gain in variance explained in a

word-likeness judgment task. For this reason, we adopt a non-normalized

measure of phonotactic probability here, acknowledging that best practices

have not yet been established on this point (see also Nerbonne et al.,
1999).

4Note that the descriptive statistics for the continuous variables are based

on values before z-score normalization to be maximally informative about

the distribution of the variables, because z-scores have by definition a

mean value of zero and a standard deviation of 1.
5We thank Andrea Maynard for carefully hand-correcting these TextGrids.
6A reviewer correctly notes that the study of Bell et al. (2009) had more

power than ours, and so our failure to find an effect of forward bigram

probability for function words [the weaker bigram predictor in Bell et al.
(2009)] may reflect the size of our data set. However, the differing results

for lexical words in the two studies cannot be explained away on the same

grounds.
7A reviewer observes that possessors can also follow possessums in

English, as in the tail of the dog. There are many non-trivial differences

between this construction and the corresponding construction in

Kaqchikel. First, postnominal possession in English involves a preposi-

tional phrase, while postnominal possession in Kaqchikel does not.

Second, postnominal possession is the primary means of expressing pos-

sessive relations in Kaqchikel (Aissen, 1999; Brown et al., 2010, pp.

155–157), while English also makes frequent use of an alternative con-

struction, the Saxon genitive -s (the dog’s tail). [Grafmiller (2014) reports

that the Saxon genitive -s is used for 22%–45% of possessive construc-

tions, depending on the corpus genre.] Third, postnominal possession in

English is subject to a raft of semantic and pragmatic conditions which do

not appear to condition post-nominal possession in Kaqchikel (Barker,

1995; Rosenbach, 2014; Grafmiller, 2014, and references therein). All of

these grammatical differences could plausibly lead to substantial differ-

ences in word-level transitional probabilities between Kaqchikel and

English.
8We assume here and elsewhere that statistical dependencies (such as high

bigram probabilities between words) are more likely to hold between

words which occur within the same syntactic constituent than between

words which belong to different syntactic constituents (e.g., Saffran, 2002,

2003).
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Aissen, J. (1999). “External possessor and logical subject in Tz’utujil,” in

External Possession, edited by D. Payne and I. Barshi (John Benjamins,

Amsterdam), pp. 451–485.
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